

Just "Look" and "Turn", Simple, easy-to-use fiber sensor

Incident light intensity and threshold value are displayed simultaneously

The incident light intensity and threshold value can be checked at the same time with no operations needed. In addition, no complex mode settings are needed when the values are adjusted.

Adjustment variations according to the individual have been eliminated

Accurate control of the adjuster threshold values by using numerical values is possible due to the digital display. This allows anybody to perform the same settings.

Easy-to-understand operating panel layout

The threshold value adjuster and operation mode switch are large and easy to see, and they can be operated with the same sensitivity as general-purpose photoelectric sensors. Functions which are not commonly used can be operated using a non-obtrusive setting switch.

Threshold values can be changed smoothly

This sensor uses the R.S.S.* adjuster with a compact encoder inside.
The sensitivity amount changes depending on the rotation speed of the adjuster, so that adjustment can be carried out speedily.

[^0]

Large endless adjuster

New concept
Standard screwdrivers can be used to turn the adjuster as well as precision screwdrivers. In addition, an "endless" mechanism is used which eliminates the possibility of any damage being caused by turning the adjuster too far.

Beam power greatly increased to give strong performance under adverse environments

Red LED type
The beam power has been greatly increased. This means a longer sensing distance and less trouble from problems such as dust. These sensors have ample performance for workplace needs.

Improved stability over both long and short terms Red LED type

The red LED type sensors have a "four-chemical emitting element" which maintains stability of light emissions for long-term operation. Furthermore, all models have an "APC (Auto Power Control) circuit" which improves stability at times such as when the power is turned on. These features improve overall stability compared to previous models.

- Stable sensing comparison

Excellent workability and ease of maintenance

Color combinations that can be discerned during mark sensing

$\begin{array}{\|r} \hline \text { Mark } \\ \begin{array}{ll} \text { Back- } & \text { color } \\ \text { ground color } \end{array} \\ \hline \end{array}$	White	Yellow	Orange	Red	Green	Blue	Black
White		-	-	\bullet -	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet$
Yellow	-		-	\bullet	- ${ }^{\circ}$	- \bullet	$\bullet \bullet$ -
Orange	\bullet	-		$\bullet \bullet$	- -	- \bullet	$\bullet \bullet$
Red	$\bullet \bullet$	-	-		-	$\bullet \bullet$	- 0
Green	$\bullet \bullet$	- - -	- \bullet	\bullet		-	-
Blue	$\bullet \bullet$	$\bullet \bullet$	$\bullet \bullet$	$\bullet \bullet$	-		-
Black	$\bullet \bullet$	- -	- ${ }^{\circ}$	$\bullet \bullet$	-	-	

> - Red LED type : Blue LED type © Green LED type

The same quick-connection cable that is used for sensors such as the FX- $\mathbf{3 0 0}$ series of digital fiber sensors is used. This means that they can be used together with other types of sensors such as laser sensors, and the number of power supply cables can be reduced.

FX-412 can be turned by finger!
 New concept

The adjuster can be turned directly by finger, without the need for a screwdriver.

Three types are available, with red, blue and green light Different sensors can be selected to suit the application.

Connector type

FIBER
FIBER
SENSORS
LASER
SENSORS
PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS
SAFETY LIGHT
SAFETY COMPONENTS
PRESSURE /
FLOW
FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
SIMPLE
WIRE-SAVING
UNITS
WIRE-SAVING
SYSTEMS

MEASUREMENT

SENSORS
STATIC
CONTROL
DEVICES
LASER
MARKERS

PLC

HUMAN MACHINE
INTERFACES
ENERGY
MANAGEMEN
MANAGEMENT
SOLUTIONS
FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS

Selection Guide
Fibers
Fiber Amplifiers
Other Products
FX-500
FX-550
FX-100
FX-410

PHOTOELECTRIC
SENSORS
MICRO
PHOTOELECTRIC
SENSORS
AREA
SENSORS

SAFETYLIGHT SAFETY COMPONENTS

PRESSURE / FLOW
SENSORS
INDUCTIVE
PROXIMITY
SENSORS
PARTICULAR
USE SENSORS
SENSOR
OPTIONS
WIRE-SAVING
UNITS
WIRE-SAVING
SYSTEMS

MEASUREMENT SENSORS
STATIC
CONTROL
DEVICES
LASER
MARKERS

PLC

HUMAN MACHINE INTERFACES
ENERGY
MANAGEMENT
SOLUTIONS
FA COMPONENTS
MACHINE VISION
SYSTEMS
UV CURING
SYSTEMS
$\left.\begin{array}{r}\text { Selection } \\ \text { Guide }\end{array} \left\lvert\, \begin{array}{r}\text { Fibers } \\ \text { Amplifiers }\end{array}\right.\right\}$

Contributing to device miniaturization

This fiber sensor is the smallest among the dual digital display types, contributing to device miniaturization.

Equipped with 3 types timers

Equipped with OFF-delay / ON-delay / ONE SHOT timer. (Timer period: 1 ms to 3 sec . approx.)

Interference prevention for up to 8 sets fiber heads (for U-LG)
The optical communication function allows up to a maximum of eight sets of fiber heads (four sets for FAST and STD settings) to be installed in contact with each other without mutual interference occurring. (Set automatically when power is turned on.)

Key lock function prevents wrong operation

Ideal for dealing with saturation / Light-emitting amount selection function Red LED type New concept

In cases where the incoming light level can become saturated, such as during close-range sensing or when sensing transparent or minute objects, the sensor's lightemitting amount can be adjusted to provide more stable sensing without changing the response time.

Digital display upside-down / off function
The digital display can be turned upside-down if required to suit the setup location. In addition, a stability indicator is also provided, so that the amount of light-receiving excess can be checked even when the display is turned off.

Hold function

Peak and bottom hold values for the incident light intensity can be displayed. This is useful for checking the incident light intensity during tasks such as drop detection.
In addition, the peak and bottom values can be checked while looking at the threshold value, which makes adjustment much easier.

This prevents the operator from changing the threshold value by mistake.

ORDER GUIDE

Ampli	ck-connection	not supplied with th	lifier. Please order	
Type	Appearance	Model No.	Emitting element	Output
\#		FX-411	Red LED	
\%		FX-411B	Blue LED	NPN open-collector transistor
$\frac{2}{2}$		FX-411G	Green LED	
\#	-	FX-411P	Red LED	
ठ		FX-411BP	Blue LED	PNP open-collector transistor
Z		FX-411GP	Green LED	
		FX-412 (Note)	Red LED	
\%		FX-412B (Note)	Blue LED	NPN open-collector transistor
		FX-412G (Note)	Green LED	

Note: The FX-412 \square has a threshold value adjuster that can be adjusted with your fingers.

Quick-connection cables Quick-connection cable is not supplied with the amplifier. Please order it separately.

Type	Model No.	Description	
Main cable (3-core)	CN-73-C1	Length: 1 m 3.281 ft	$0.2 \mathrm{~mm}^{2} 3$-core cabtyre cable, with connector on one end Cable outer diameter: $\varnothing 3.3 \mathrm{~mm}$ $\varnothing 0.130$ in
	CN-73-C2	Length: 2 m 6.562 ft	
	CN-73-C5	Length: 5 m 16.404 ft	
Sub cable (1-core)	CN-71-C1	Length: 1 m 3.281 ft	$0.2 \mathrm{~mm}^{2} 1$-core cabtyre cable, with connector on one end Cable outer diameter: $\varnothing 3.3 \mathrm{~mm}$ $\varnothing 0.130$ in
	CN-71-C2	Length: 2 m 6.562 ft	
	CN-71-C5	Length: 5 m 16.404 ft	

End plates End plates are not supplied with the amplifier. Please order them separately when the amplifiers are mounted in cascade.

Appearance	Model No.	Description

OPTIONS

Designation	Model No.	Description
Amplifier mounting bracket	MS-DIN-2	Mounting bracket for amplifier
	FX-MB1	10 sets of 2 communication window seals and 1 connector seal Communication window seal: It prevents malfunction due to transmission signal from another amplifier, as well as, prevents effect on another amplifier. Connector seal: It prevents contact of any metal, etc., with the pins of the quick-connection cable.

Amplifier mounting bracket - MS-DIN-2

Fiber amplifier protection seal

- FX-MB1

Communication window seal

Sub cable

- CN-71-Cם

LIST OF FIBERS

Thru-beam type (one pair set) Fibers are listed in alphabetic order. Refer to "Fiber Selection p. $5 \sim$ " for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)										Dimensions
	Red LED			Blue LED			Green LED				
	U-LG	STD	FAST	U-LG	STD	FAST	U-LG	STD	AS		
FT-140	19,600 771.654 (Note 2)	16,000 629.921	15,000 590.551	14,000 551.181	3,300 129.921	2,200 86.614	9,500 374.016	2,500 98.425	1,80	0.866	P. 63
FT-30	60023.622	$145 \quad 5.709$	$95 \quad 3.740$	$90 \quad 3.543$	$24 \quad 0.945$	$15 \quad 0.591$	$45 \quad 1.772$	$12 \quad 0.472$	8	0.315	P. 63
FT-31	54021.260	$140 \quad 5.512$	$85 \quad 3.346$	$85 \quad 3.346$	$\begin{array}{lll}20 & 0.787\end{array}$	$14 \quad 0.551$	$38 \quad 1.496$	$10 \quad 0.394$	7	276	P. 63
FT-31S	54021.260	1405.512	$85 \quad 3.346$	$85 \quad 3.346$	$20 \quad 0.787$	$14 \quad 0.551$	381.496	$10 \quad 0.394$	7	0.276	P. 63
FT-31W	38014.961	$80 \quad 3.150$	$55 \quad 2.165$	$53 \quad 2.087$	160.630	$9 \quad 0.354$	281.102	$7 \quad 0.276$	4	0.157	P. 63
FT-32	3,600 141.732 (Note 2)	1,190 46.850	87034.252	86033.858	2208.661	$145 \quad 5.709$	45017.717	1204.724	80	3.150	P. 63
F	1,600	34513.583	2459.646	2509.843	$65 \quad 2.559$	$\begin{array}{lll}45 & 1.772\end{array}$	1405.512	$40 \quad 1.575$	25	0.984	P. 63
FT-42	1,550 61.024	34013.386	$240 \quad 9.449$	2309.055	$60 \quad 2.362$	$40 \quad 1.575$	1254.921	331.299	22	0.866	P. 63
FT-42S	1,550 61.024	34013.386	$240 \quad 9.449$	2309.055	$60 \quad 2.362$	$40 \quad 1.575$	$\begin{array}{ll}125 & 4.921\end{array}$	$\begin{array}{lll}33 & 1.299\end{array}$	22	0.866	P. 63
FT-42W	1,300 51.181	29011.417	2108.268	2208.661	$57 \quad 2.244$	331.299	1104.331	321.260	19	0.748	P. 63
FT	2,200	45017.717	31012.20	46018.110	1204.724	$75 \quad 2.953$	2509.843	$62 \quad 2.441$	44	1.732	P. 64
FT-4	1,600 62.992	37014.567	28011.024	26010.236	$64 \quad 2.520$	$45 \quad 1.772$	1305.118	$34 \quad 1.339$	23	0.906	P. 64
FT-A11	3,600 141.732 (Note 2)	2,400 94.488	1,800 70.866	1,300 51.181	35013.780	2208.661	77030.315	1907.480	120	4.724	P. 64
FT-A11W	3,600 141.732 (Note 2)	2,500 98.425	2,000 78.740	1,300 51.181	35013.780	2208.661	55021.654	1505.906	130	5.118	P. 64
FT	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	2,500 98.425	75029.528	38014.961	1,500 59.055	2208.661	130	5.118	P. 64
FT-A32	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	3,600 141.732 (Note 2)	3,400 133.858	80031.49	47018.504	2,100 82.677	33012.992	140	5.512	P. 64
FT-AL05	1,100 43.307	2409.449	1807.087	2208.661	$55 \quad 2.165$	$35 \quad 1.378$	1254.921	$30 \quad 1.181$	20	0.787	P. 64
FT-E13	$30 \quad 1.181$	$7 \begin{array}{ll}7 & 0.276\end{array}$	$\begin{array}{lll}5 & 0.197\end{array}$	2.50 .098			$1 \begin{array}{ll}1 & 0.039\end{array}$				P. 64
FT-E23	1104.331	$20 \quad 0.787$	150.591	120.472	30.118	$2 \quad 0.079$	60.236	10.039			P. 64
FT	1,100 43.307	28011.024	2007.874	501.969	130.512	90.354	1505.906	160.630	10	0.394	P. 65
FT-H20-J2O-S (Note 3)	70027.559	1606.299	1104.331	1204.724	$20 \quad 0.787$		$60 \quad 2.362$				P. 65
FT-H20-J30-S (Note 3)	70027.559	1606.299	1104.331	1204.724	$20 \quad 0.787$		$60 \quad 2.362$				P. 65
FT-H20-J50-S (Note 3)	70027.559	1606.299	1104.331	1204.724	$20 \quad 0.787$		$60 \quad 2.362$				P. 65
FT-H20-M1	55021.654	1505.906	1003.937	1003.937	250.984	$20 \quad 0.787$	$65 \quad 2.559$	$17 \quad 0.669$	2	0.472	P. 65
FT-H20-VJ50-S (Note 3)	1,100	2409.449	1706.693	1706.693	351.378		$90 \quad 3.543$				P. 65
FT-H20-VJ80-S (Note 3)	1,100 43.307	2409.449	1706.693	1706.693	351.378		$90 \quad 3.543$				P. 65
FT-H20W-M1	40015.748	1104.331	$80 \quad 3.15$	$75 \quad 2.953$	190.748	$13 \quad 0.512$	$58 \quad 2.283$	$13 \quad 0.512$	9	0.354	P. 65
FT-H30-M1V-S (Note 4)	39015.354	1003.937	$70 \quad 2.756$	$75 \quad 2.953$	$20 \quad 0.787$	150.591	$55 \quad 2.165$	130.512	10	0.394	P. 65
FT-H35	60023.622	1505.906	1104.331	1154.528	281.102	$20 \quad 0.787$	903.543	$20 \quad 0.787$	14	0.551	P. 65
FT-H35-M2S6	60023.622	1505.906	1104.331	1154.528	281.102	$20 \quad 0.787$	$90 \quad 3.543$	$20 \quad 0.787$	14	0.551	P. 65
FT-HL80Y	3,500 137.795 (Note 2)	80031.496	55021.654	1505.906	$35 \quad 1.378$	$20 \quad 0.787$	2007.874	$55 \quad 2.165$	35	1.378	P. 66
FT-KS40	3,600 141.732 (Note 2)	2,000 78.740	1,900 74.803	1,000 39.370	27010.630	1907.480	59023.228	1305.118	53	2.087	P. 66
FT-KV26	88034.646	1706.693	1204.724	1305.118	311.220		903.543	$18 \quad 0.709$			P. 66
FT-KV26H1	79031.102	1505.906	1003.937	1154.528	281.102		$80 \quad 3.150$	160.630			P. 66
FT-KV40	3,600 141.732 (Note 2)	1,700 66.929	1,300 51.181	1,200 47.244	31012.205	1907.480	80031.496	1907.480	120	4.724	P. 66
FT-KV40W	3,600 141.732 (Note 2)	1,600 62.992	1,100 43.307	90035.433	27010.630	$140 \quad 5.512$	42016.535	1003.937	65	2.559	P. 66
FT-L80Y	3,500 137.795 (Note 2)	90035.433	60023.622	2509.843	$60 \quad 2.362$	$40 \quad 1.575$	30011.811	$70 \quad 2.756$	45	1.772	P. 66
FT-R31	38014.961	793.110	562.205	803.150	$20 \quad 0.787$	130.512	381.496	100.394	7	0.276	P. 66
FT-R40	1,200 47.244	2409.449	1706.693	2007.874	501.969	321.260	1003.937	281.102	19	0.748	P. 66
FT-R41W	1,200 47.244	29011.417	2007.874	2208.661	$57 \quad 2.244$	$\begin{array}{lll}33 & 1.299\end{array}$	$100 \quad 3.937$	$26 \quad 1.024$	18	0.709	P. 66
FT-R42W	3,600 141.732 (Note 2)	99038.976	74029.134	31012.205	$75 \quad 2.953$	$58 \quad 2.283$	27010.630	$70 \quad 2.756$	50	1.969	P. 66
FT-R43	1,200 47.244	2309.055	1606.299	2007.874	$50 \quad 1.969$	321.260	1003.937	$26 \quad 1.024$	18	0.709	P. 67
FT-R44Y	1,200 47.244	2309.055	1606.299	2007.874	$50 \quad 1.969$	$32 \quad 1.260$	1003.937	$26 \quad 1.024$	18	0.709	P. 67
FT-R60Y	3,600 141.732 (Note 2)	75029.528	54021.260	56022.047	1405.512	$90 \quad 3.543$	29011.417	$75 \quad 2.953$	50	1.969	P. 67
FT-S11	1505.906	$30 \quad 1.181$	$20 \quad 0.787$	$21 \quad 0.827$	$5 \quad 0.197$	$\begin{array}{lll}3.5 & 0.138\end{array}$	$12 \quad 0.472$	$2 \begin{array}{ll}2 & 0.079\end{array}$	1.5	0.059	P. 67
FT-S20	60023.622	$145 \quad 5.709$	$95 \quad 3.740$	$90 \quad 3.543$	$24 \quad 0.945$	$15 \quad 0.591$	$45 \quad 1.772$	$12 \quad 0.472$	8	0.315	P. 67
FT-S21	54021.260	1405.512	$85 \quad 3.346$	$85 \quad 3.346$	$20 \quad 0.787$	140.551	$38 \quad 1.496$	$10 \quad 0.394$	7	0.276	P. 67

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range.
3) Heat-resistant joint fibers and ordinary-temperature fibers (FT-42) are sold as a set. Please refer to p. 37 for details
4) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to p. 39 for details.

LIST OF FIBERS

Thru-beam type (one pair set)

Fibers are listed in alphabetic order. Refer to "Fiber Selection p.5~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1)												Dimensions
	Red LED			Blue LED				Green LED					
	U-LG	STD	FAST	U-LG	STD	FAS		U-LG	ST		FAS		
FT-S21W	38014.961	$80 \quad 3.150$	$55 \quad 2.165$	$53 \quad 2.087$	160.630	9	0.354	$28 \quad 1.102$	7	0.276	4	0.157	P. 67
FT-S22	91035.827	1907.480	1405.512	1104.331	$29 \quad 1.142$	17	0.669	$70 \quad 2.756$	18	0.709	11	0.433	P. 67
FT-S30	1,600 62.992	34513.583	2459.646	2509.843	$65 \quad 2.559$	45	1.772	1405.512	40	1.575	25	0.984	P. 67
FT-S31W	1,300 51.181	29011.417	2108.268	2208.661	$57 \quad 2.244$	33	1.299	1104.331	32	1.260	19	0.748	P. 68
FT-S32	3,600 141.732 (Note 2)	92036.220	67026.378	70027.559	1807.087	110	4.331	40015.748	92	3.622	62	2.441	P. 68
FT-V23	72028.346	1405.512	1003.937	1204.724	$30 \quad 1.181$	20	0.787	$65 \quad 2.559$	16	0.630	9	0.354	P. 68
FT-V24W	$140 \quad 5.512$	$25 \quad 0.984$	$20 \quad 0.787$	$18 \quad 0.709$	20.079			50.197					P. 68
FT-V25	36014.173	$70 \quad 2.756$	501.969	$57 \quad 2.244$	$10 \quad 0.394$	7	0.276	$28 \quad 1.102$	8	0.315	5	0.197	P. 68
FT-V30	77030.315	1606.299	1204.724	2108.268	$47 \quad 1.850$	28	1.102	1003.937	22	0.866	10	0.394	P. 68
FT-V40	3,600 141.732 (Note 2)	95037.402	73028.740	81031.890	1907.480	130	5.118	50019.685	115	4.528	81	3.189	P. 68
FT-V80Y	1,500 59.055	35013.780	2509.843	$240 \quad 9.449$	$55 \quad 2.165$	35	1.378	1807.087	38	1.496	24	0.945	P. 68
FT-Z20HBW	39015.354	$80 \quad 3.150$	$55 \quad 2.165$	$64 \quad 2.520$	$16 \quad 0.630$	10	0.394	$30 \quad 1.181$	7	0.276	5	0.197	P. 68
FT-Z20W	1,300 51.181	27010.630	1907.480	1706.693	391.535	23	0.906	923.622	19	0.748	11	0.433	P. 68
FT-Z30	3,100 122.047	66025.984	48018.898	64025.197	1606.299	100	3.937	32012.598	87	3.425	59	2.323	P. 68
FT-Z30E	3,600 141.732 (Note 2)	1,200 47.244	92036.220	96037.795	2509.843	160	6.299	46018.110	120	4.724	83	3.268	P. 69
FT-Z30EW	3,600 141.732 (Note 2)	59023.228	43016.929	94037.008	1807.087	110	4.331	40015.748	85	3.346	56	2.205	P. 69
FT-Z30H	3,600 141.732 (Note 2)	1,300 51.181	95037.402	1,100 43.307	29011.417	170	6.693	58022.835	150	5.906	100	3.937	P. 69
FT-Z30HW	3,600 141.732 (Note 2)	1,300 51.181	95037.402	94037.008	1807.087	110	4.331	40015.748	85	3.346	56	2.205	P. 69
FT-Z30W	2,400 94.488	54021.260	39015.354	49019.291	1204.724	83	3.268	2409.449	67	2.638	45	1.772	P. 69
FT-Z40HBW	1,300 51.181	29011.417	2108.268	2208.661	$57 \quad 2.244$	33	1.299	1104.331	32	1.260	19	0.748	P. 69
FT-Z40W	2,200 86.614	46018.110	34013.386	38014.961	$90 \quad 3.543$	63	2.480	1706.693	45	1.772	30	1.181	P. 69
FT-Z802Y	3,500 137.795 (Note 2)	75029.528	54021.260	45017.717	1104.331	80	3.150	30011.811	80	3.150	60	2.362	P. 69

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
2) The fiber cable length practically limits the sensing range.

Retroreflective type

Fibers are listed in alphabetic order. Refer to "Fiber Selection p.5~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1,2)									Dimensions
	Red LED			Blue LED			Green LED			
	U-LG	STD	FAST	U-LG	STD	FAST	U-LG	STD	FAST	
FR-KZ22E	15 to 3500.59101313 .70	15 to 1400.591 t0.512	15 to 1000.591 to.9.93	20 to 1000.887100 .937						P. 70
FR-KZ50E	20 to 400 0.887 015.788	20 to 2000.787 t0.7.84	20 to 2000.787 t0.7.87	20 to 2000.878107 .874	20 to 840.887103 .307	20 to 450.787 to 1.771	20 to 180 0.787107.087	20 to 550.787 to 1.569		P. 70
FR-KZ50H	20 to 4000.787 to 15748	20 to 2000.787 t0.7.84	20 to 2000.78710 .7874	20 to 1450.88710 .7 .70	20 to 470.78710 .1850	20 to 260.787 to 1.024	20 to 1450.887105 .709	20 to 470.877 to 1.85	20 to 260.787 to 1.024	P. 70
FR-Z50HW	100 to 1,000 3.937 to393, ${ }^{\text {a }}$	100 to 5403.9371021 .200	100 to 4603.9371018 .110	100 to $4903.9377^{1092991}$	-	-	-	-	\square	P. 70

Notes: 1) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
The sensing range of FR-KZ22E is specified for the attached reflector. The sensing range of FR-KZ50E and FR-KZ50H is specified for the attached reflector RF-003. The sensing range of FR-Z50HW is specified for the reflective tape RF-13.
2) The sensing range is the possible setting range for the attached reflector. The fiber can detect an object less than setting range for the reflector. However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.

Sensing range when using in combination with FR-Z50HW reflector (Optional)
The sensing ranges are the value for red LED types.

Reflector Model No.	Sensing range (mm in)		
	FX-411		
	U-LG	STD	FAST
RF-230	100 to 12,000 3.937 to 47.244	100 to 1,700 3.937 to 66.929	100 to 1,300 3.937 to 01.181
RF-220	100 to 2,200 3, 3.37 to8.661	100 to 9503.337 to 37.402	100 to 7303.937 to 28.740
RF-210	100 to 2,100 3.937 to 82.677	100 to 7803.937 to 30.709	100 to 6203.937 to 24.409

Note: The sensing range is the possible setting range for the reflector. The fiber can detect an object less than setting range for the reflector. However, note that if there are any white or highly-reflective surfaces near the fiber head, reflected incident light may affect the fiber head. If this occurs, adjust the threshold value of the amplifier unit before use.

LIST OF FIBERS

Reflective type
Fibers are listed in alphabetic order. Refer to "Fiber Selection p.5~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1, 2) / Description									Dimensions
	Red LED			Blue LED			Green LED			
	U-LG	STD	FAST	U-LG	STD	FAST	U-LG	STD	FAST	
FD-30	2007.874	$48 \quad 1.890$	$35 \quad 1.378$	$40 \quad 1.575$	90.354	$6 \quad 0.236$	$18 \quad 0.709$	$5 \quad 0.197$	$3 \quad 0.118$	P. 71
FD-31	$175 \quad 6.890$	$45 \quad 1.772$	$34 \quad 1.339$	$\begin{array}{ll}35 & 1.378\end{array}$	$8 \quad 0.315$	50.197	160.630	$4 \quad 0.157$	20.079	P. 71
FD-31W	1204.724	$20 \quad 0.787$	$15 \quad 0.591$	160.630	30.118	1 to 2.50 .039 to 0.098	$7 \quad 0.276$	1 to 2.50 .0395100 .098	-	P. 71
FD-32G	2409.449	$52 \quad 2.047$	$38 \quad 1.496$	$48 \quad 1.890$	110.433	$8 \quad 0.315$	$24 \quad 0.945$	$5 \quad 0.197$	$4 \quad 0.157$	P. 71
FD-32GX	32012.598	$50 \quad 1.969$	$38 \quad 1.496$	501.969	120.472	$9 \quad 0.354$	$24 \quad 0.945$	$7 \quad 0.276$	$4 \quad 0.157$	P. 71
FD-34G	1505.906	$30 \quad 1.181$	220.866	190.748	50.1970	0.2 to 30.008 to0.118	100.394	0.3 to 2.50 .012160 .0088	0.4 to 1.50 .016600 .059	P. 71
FD-40	2007.874	$48 \quad 1.890$	$\begin{array}{lll}35 & 1.378\end{array}$	$40 \quad 1.575$	$\begin{array}{ll}9 & 0.354\end{array}$	$6 \quad 0.236$	$18 \quad 0.709$	$\begin{array}{lll}5 & 0.197\end{array}$	$3 \quad 0.118$	P. 71
FD-41	1756.890	$45 \quad 1.772$	$34 \quad 1.339$	$35 \quad 1.378$	$8 \quad 0.315$	$\begin{array}{ll}5 & 0.197\end{array}$	$16 \quad 0.630$	$4 \quad 0.157$	20.079	P. 71
FD-41S	1756.890	$40 \quad 1.575$	$30 \quad 1.181$	351.378	80.315	50.197	160.630	$4 \quad 0.157$	20.079	P. 71
FD-41SW	1204.724	$20 \quad 0.787$	150.591	180.709	1 to 40.039900 .157	1 to 2.50 .039 to 00.08	120.472	1 to $2.50 .039+10.0098$	-	P. 71
FD-41W	33012.992	$70 \quad 2.756$	$50 \quad 1.969$	$54 \quad 2.126$	0.5 to 130.020610 .512	1 to 80.039900 .315	291.142	1.5 to 70.059 to. 2.276	1.5 to 4.50 .505900 .177	P. 72
FD-42G	2409.449	$52 \quad 2.047$	$38 \quad 1.496$	$48 \quad 1.890$	110.433	$8 \quad 0.315$	$24 \quad 0.945$	$5 \quad 0.197$	$4 \quad 0.157$	P. 72
FD-42GW	2409.449	$40 \quad 1.575$	$30 \quad 1.181$	$30 \quad 1.181$	$7 \begin{array}{ll}7 & 0.276\end{array}$	50.197	150.591	$4 \quad 0.157$	20.079	P. 72
FD-60	60023.622	1505.906	1003.937	1305.118	$30 \quad 1.181$	$20 \quad 0.787$	$70 \quad 2.756$	$20 \quad 0.787$	$\begin{array}{ll}13 & 0.512\end{array}$	P. 72
FD-61	51020.079	1405.512	$90 \quad 3.543$	1054.134	271.063	$18 \quad 0.709$	$65 \quad 2.559$	160.630	$11 \quad 0.433$	P. 72
FD-61G	46018.110	1104.331	$80 \quad 3.150$	1054.134	$27 \quad 1.063$	$18 \quad 0.709$	$55 \quad 2.165$	$15 \quad 0.591$	$9 \quad 0.354$	P. 72
FD-61S	50019.685	1405.512	$95 \quad 3.740$	1054.134	271.063	$18 \quad 0.709$	$65 \quad 2.559$	160.630	110.433	P. 72
FD-61W	33012.992	$70 \quad 2.756$	$50 \quad 1.969$	542.126	0.5 to 130.020000 .512	1 to 80.039 to. 315	291.142	1.5 to 70.059 to 0.276	1.5 to 4.50 .059 to0.177	P. 73
FD-62	82032.283	1807.087	1305.118	1606.2991	1 to $440.0399^{\text {to } 1.732} 1$	1 to 290.039 to 1.142	983.8581	1 to 260.039 to 1.024	1 to 180.039600 .709	P. 73
FD-64X	38014.961	$80 \quad 3.150$	$55 \quad 2.165$	542.126	0.5 to 140.020 to 0.551 0	0.5 to 90.020 to. 0.54	271.063	0.5 to 70.020 to 0.276	0.5 to 4.50 .002 to0.177	P. 73
FD-A16	2007.874	$\begin{array}{lll}100 & 3.937\end{array}$	$75 \quad 2.953$	$30 \quad 1.181$	$\begin{array}{ll}13 & 0.512\end{array}$	$13 \quad 0.512$	$57 \quad 2.244$	$14 \quad 0.551$	-	P. 73
FD-AL11	46018.110	1003.937	$70 \quad 2.756$	$70 \quad 2.756$	170.669	$10 \quad 0.394$	$45 \quad 1.772$	$9 \quad 0.354$	60.236	P. 73
FD-E13	$20 \quad 0.787$	$4 \quad 0.157$	30.118	2.50 .098	0.70 .028	-	1.50 .059	-	-	P. 73
FD-E23	$75 \quad 2.953$	150.591	$10 \quad 0.394$	$10 \quad 0.394$	2.50 .098	1.50 .059	50.197	1.30 .051	$0.9 \quad 0.035$	P. 73
FD-EG30	$90 \quad 3.543$	150.591	$10 \quad 0.394$	$10 \quad 0.394$	2.50 .098	1.50 .059	50.197	1.30 .051	0.90 .035	P. 73
FD-EG30S	$85 \quad 3.346$	150.591	$10 \quad 0.394$	$10 \quad 0.394$	2.50 .098	1.50 .059	50.197	1.30 .051	$0.9 \quad 0.035$	P. 74
FD-EG31	$25 \quad 0.984$	50.197	$4 \quad 0.157$	$4 \quad 0.157$	10.039	0.50 .020	20.079	-	-	P. 74
FD-F4	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} \varnothing 0.236$ to $\varnothing 1.024$ in transparent pipe [PFA (fluorine resin) or equivalently transparent pipe, wall thickness 1 mm 0.039 in] Liquid absent: Beam received, Liquid present: Beam not received									P. 74
FD-F41	Applicable pipe diameter: Outer dia. $\varnothing 6$ to $\varnothing 26 \mathrm{~mm} \varnothing 0.236$ to $\varnothing 1.024$ in transparent pipe [PVC (vinyl chloride), fluorine resin, polycarbonate, acrylic, glass, wall thickness 1 to 3 mm 0.039 to 0.118 in] Liquid absent: Beam received, Liquid present: Beam not received									P. 74
FD-F41Y	$\varnothing 4 \mathrm{~mm}$ ø0. 157 in Protective tube: Fluorine resin, length 500 mm 19.685 in (cuttable) Liquid surface not contacted: Beam received, Liquid surface contacted: Beam not received									P. 74
FD-F8Y		-			-		-	-	-	P. 74
FD-FA93	Applicable pipe diameter: Outer dia. $\varnothing 8 \mathrm{~mm} \varnothing 0.315$ in or more transparent pipe (When used with the tying bands: $\varnothing 8$ to $\varnothing 80 \mathrm{~mm} \varnothing 0.315$ to $\varnothing 3.150$ in) [PFA (fluorine resin), including translucent] Liquid absent: Beam received, Liquid present: Beam not received									P. 74
FD-H13-FM2	43016.929	1003.937	$70 \quad 2.756$	$40 \quad 1.575$	$10 \quad 0.394$	$7 \quad 0.276$	$40 \quad 1.575$	$10 \quad 0.394$	$7 \quad 0.276$	P. 75
FD-H18-L31	0 to 250 to 0.984	0 to 100 to 0.394	0 to 80 to 0.315	-	-	-	-	-	-	P. 75
FD-H20-21	35013.780	$90 \quad 3.543$	$65 \quad 2.559$	$65 \quad 2.559$	$13 \quad 0.512$	$\begin{array}{ll}9 & 0.354\end{array}$	$45 \quad 1.772$	$10 \quad 0.394$	$\begin{array}{lll}7 & 0.276\end{array}$	P. 75
FD-H20-M1	27010.630	$85 \quad 3.346$	$60 \quad 2.362$	$60 \quad 2.362$	$14 \quad 0.551$	$10 \quad 0.394$	$58 \quad 2.283$	$10 \quad 0.394$	$7 \quad 0.276$	P. 75
FD-H25-L43	$\begin{array}{\|l\|} \hline 2.5 \text { to } 29 \\ 0.098 \text { to } 1.142 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \text { to } 20 \\ 0.157 \text { to } 0.787 \end{array}$	$\begin{array}{\|l\|} \hline 4 \text { to } 16 \\ 0.157 \text { to } 0.630 \\ \hline \end{array}$			\square	\square	-	-	P. 75
FD-H25-L45	$\begin{array}{\|l\|} \hline 5 \text { to } 42 \\ 0.197 \text { to } 1.654 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 \text { to } 38 \\ 0.276 \text { to } 1.496 \\ \hline \end{array}$	7 to 35 0.276 to 1.437	-	-	-	-	-	-	P. 75

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers.
2) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.

LIST OF FIBERS

Reflective type
Cifl
Fibers are listed in alphabetic order. Refer to "Fiber Selection p.5~" for details of each fiber.

Model No.	Sensing range (mm in) (Note 1, 2) / Description									Dimensions
	Red LED			Blue LED			Green LED			
	U-LG	STD	FAST	U-LG	STD	FAST	U-LG	STD	FAST	
$\begin{aligned} & \hline \text { FD-H3O-KZ1V-S } \\ & \text { (Note 3) } \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \text { to } 300 \\ 0.787 \text { to } 11.811 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 25 \text { to } 100 \\ 0.984 \text { to } 3.937 \\ \hline \end{array}$	$\begin{aligned} & 25 \text { to } 45 \\ & 0.984 \text { to } 1.772 \\ & \hline \end{aligned}$							P. 76
FD-H30-L32	0 to 200 to 0.787	1 to 80.039 to 0.315	1 to 60.039 to 0.236							P. 76
$\begin{aligned} & \text { FD-H30-L32V-S } \\ & \text { (Note 3) } \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \text { to } 11 \\ 0 \text { to } 0.433 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.5 \text { to } 5 \\ 0.059 \text { to } 0.197 \end{array}$	$\begin{array}{\|l\|} 2 \text { to } 4 \\ 0.079 \text { to } 0.157 \\ \hline \end{array}$							P. 76
FD-H35-20S	2108.268	501.969	351.378	451.772	100.394	70.276	200.787	60.236	40.157	P. 76
FD-H35-M2	30011.811	833.268	602.362	501.969	120.472	90.354	501.969	100.394	70.276	P. 76
FD-H35-M2S6	30011.811	803.150	501.969	501.969	140.551	100.394	401.575	100.394	70.276	P. 76
F		ø 4 mm Liquid su	ø0.157 in Protec urface not conta	ctive tube: fluorin acted: Beam rec	e resin, length ived, Liquid su	h:500 mm 19.68 surface contacte	in (allowab Beam not	utting) eived		P. 76
FD-L10	0 to 4.40 to 0.173	0 to 40 to 0.157	0 to 3.80 to 0.150	3.50 .138	2.50 .098	20.079	0 to 30 to 0.118	1 to 20.039100 .079		P. 77
FD-L11	0 to 100 to 0.394	0 to 70 to 0.276	0 to 70 to 0.276	8.50 .335	$6 \quad 0.236$	$\begin{array}{lll}5.5 & 0.217\end{array}$	$8 \quad 0.315$	$5 \quad 0.197$		P. 77
FD-L12W	0.5 to 100.0220 to 0.394	1 to $4.50 .039+100.177$	1 to 3.50 .039600 .137							P. 77
FD-L20H	1 to 32.0 .039 to 1.260	4 to 100.157 to. 3 34	4.5 to 100.177100 .344	4 to 130.157 to. 0.512	5 to 90.197100 .354	5.5 to 8.50 .217700 .334	5 to 110.197100 .433	6 to 8.50 .23660 .0335		P. 77
FD-L21	1 to 180.039 to.0.799	3 to 140.118800 .551	3 to 130.118 to0.512					-	\square	P. 77
FD-L21W	3 to 160.118800 .630	7 to 120.276 to. 0.72	7 to 110.2761000 .433							P. 77
FD-L22A	0 to 260 to 1.024	0 to 230 to 0.906	0 to 190 to 0.748						\longrightarrow	P. 77
FD-L23	0 to 300 to 1.181	0 to 300 to 1.181	0 to 280 to 1.102							P. 77
FD-L30A	0 to 500 to 1.969	0 to 360 to 1.417	0 to 300 to 1.181				-	-	-	P. 77
FD-L31A	4 to 330.157 to 1.299	5 to 320.197101 .260	5 to 300.197 to1.181	4 to 310.157 to 1.220					-	P. 77
FD-L32H	0 to 650 to 2.559	15 to 300.591 to 1.181	20 to 250.787 700.984	15 to 300.591 to 1.181						P. 78
FD-R31G	2409.449	$42 \quad 1.654$	$30 \quad 1.181$	$41 \quad 1.614$	$9 \quad 0.354$	$6 \quad 0.236$	$\begin{array}{ll}21 & 0.827\end{array}$	$5 \quad 0.197$	20.079	P. 78
FD-R32EG	$90 \quad 3.543$	150.591	100.394	$10 \quad 0.394$	2.50 .098	1.50 .059	$\begin{array}{lll}5 & 0.197\end{array}$	1.30 .051		P. 78
FD-R33EG	$25 \quad 0.984$	$\begin{array}{ll}5 & 0.197\end{array}$	$3 \quad 0.118$	$4 \quad 0.157$	0.80 .031		20.079			P. 78
FD-R34EG	$75 \quad 2.953$	$13 \quad 0.512$	80.315	$9 \quad 0.354$	20.079	10.039	50.197	$0.9 \quad 0.035$		P. 78
FD-R41	33012.992	$65 \quad 2.559$	471.850	$51 \quad 2.008$	$10 \quad 0.394$	1 to 80.039900 .315	$25 \quad 0.984$	1 to 60.03960 .236	1 to 50.039900 .197	P. 78
FD-R60	42016.535	1104.331	803.150	823.228	$23 \quad 0.906$	$15 \quad 0.591$	$59 \quad 2.323$	150.591	$10 \quad 0.394$	P. 78
FD-R61Y	34013.386	$65 \quad 2.559$	471.850	$60 \quad 2.362$	0.5 to 150.02020 .0 .591	0.5 to 100.020210 .3034	301.181	0.5 to 70.020 to 0.276	1 to 50.039900 .97	P. 78
FD-S21	$80 \quad 3.150$	$18 \quad 0.709$	130.512	120.472	2.50 .098	$2 \quad 0.079$	6.50 .256	1.50 .059	10.039	P. 78
FD-S30	2007.874	$48 \quad 0.890$	351.378	$40 \quad 1.575$	$9 \quad 0.354$	$6 \quad 0.236$	$18 \quad 0.709$	$5 \quad 0.197$	30.118	P. 79
FD-S31	1756.890	$45 \quad 1.772$	341.339	351.378	80.315	$5 \quad 0.197$	160.630	$4 \quad 0.157$	20.079	P. 79
FD-S32	51020.079	1204.724	$90 \quad 3.543$	1054.134	271.063	$18 \quad 0.709$	$65 \quad 2.559$	160.630	$11 \quad 0.433$	P. 79
FD-S32W	33012.992	$70 \quad 2.756$	501.969	$54 \quad 2.126$	0.5 to 130.020260 .512	1 to 80.039900 .315	$29 \quad 1.142$	1.5 to 70.059 to 0.276	1.5 to 4.50 .059 to 0.177	P. 79
FD-S33GW	2409.449	$40 \quad 1.575$	301.181	301.181	$7 \quad 0.276$	$5 \quad 0.197$	150.591	$4 \quad 0.157$	20.079	P. 79
FD-S34G	1505.906	301.181	220.866	190.748	50.197	0.2 to 30.008100 .118	$10 \quad 0.394$	0.3 to 2.50 .0121000 .098	0.4 to 1.50 .016600 .059	P. 79
FD-S60Y	41016.142	1305.118	1003.937	1204.724	$25 \quad 0.984$	$17 \quad 0.669$	$65 \quad 2.559$	$10 \quad 0.394$	-	P. 79
FD-V30	1104.331	190.748	140.551	$18 \quad 0.709$		-	$10 \quad 0.394$	-	\square	P. 79
FD-V30W	$30 \quad 1.181$	$\begin{array}{ll}5 & 0.197\end{array}$	30.118	-	-		-		$\underline{\square}$	P. 80
FD-V50	1606.299	$35 \quad 1.378$	$25 \quad 0.984$	271.063	$7 \quad 0.276$	-	160.630	-	\square	P. 80
FD-Z20HBW	1 to 10000.039 to.9.937	3 to 200.118800 .787	3 to 150.1181800 .591	3 to 160.118800 .030		-	3 to 80.118800 .315	-	\square	P. 80
FD-Z20W	1405.512	3 to 260.118801 .024	3 to 170.118100 .669	4 to 120.157100 .472	-	-	-	-	-	P. 80
FD-Z40HBW	42016.535	1 to 8000039 to3.150	1 to 60.0 .039602362	1 to $890.039+0.504$	3 to 201.181100 .787	3 to 131.18110 .512	1 to $420.039+1.1 .654$	3 to 110.118600 .433	3 to 70.118800 .276	P. 80
FD-Z40W	34013.386	1 to $670.039+10.638$	1 to 480.039910 .880	1 to $550.039+102.165$	5 to 100.1977 .0 .394	-	3 to 250.118 to.0.884	-	-	P. 80
FD-Z50HW	10 to 8900.3941035 .539	15 to 2100.591 to8.288	15 to 1600.591 to6.299	20 to 1000.787100 .937$]$	-	-	20 to 550.787102 .165	\square	-	P. 80

Notes: 1) The standard sensing objects of the sensing ranges vary depending on the fibers.
2) Note that the sensing range of the free-cut type fiber may be reduced by 20% max. depending upon how the fiber is cut.
3) Sold as a set comprising vacuum type fiber + photo-terminal (FV-BR1) + fiber at atmospheric side (FT-J8). Please refer to p. 39 for details.

Lens (For thru-beam type fiber)

Designation		Model No.	Description						
Expansion lens (Note 1)		FX-LE1		Increases the sensing range by 5 times or more. - Ambient temperature: $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \end{aligned}$ (Note 5) - Beam dia: $\varnothing 3.6$ mm $\varnothing 0.142$ in	Sensing range for	red LED type (mm	m in) [Lens on bot	h sides] (Note 2)	
					U-LG	STD	FAST		
			FT-43		3,600 141.732 (Note 3)	2,300 90.551	1,700 66.929		
			FT-42		3,600 141.732 (Note 3)	3,200 125.984	2,300 90.551		
			FT-42W		3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	2,600 102.362		
		at	FT-45X		1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	1,600 62.992 (Note 3)		
		,	FT-R40		3,600 141.732 (Note 3)	2,900 114.173	2,300 90.551		
		-	FT-R43 FT-R44Y		3,600 141.732 (Note 3)	2,600 102.362	1,900 74.803		
			FT-H35-M2		3,500 137.795 (Note 3)	1,100 43.307	80031.496		
			FT-H20W-M1		1,600 62.992 (Note 3)	1,200 47.244	80031.496		
			FT-H20-M1		1,600 62.992 (Note 3)	$800 \quad 31.496$	$600 \quad 23.622$		
	Superexpansion lens (Note 1)		FX-LE2		Tremendously increases the sensing range with large diameter lenses. - Ambient temperature: $\begin{aligned} & -60 \text { to }+350^{\circ} \mathrm{C} \\ & -76 \text { to }+662^{\circ} \mathrm{F} \end{aligned}$ (Note 5) - Beam dia: $\varnothing 9.8 \mathrm{~mm}$ $\varnothing 0.386$ in	Sensing range for red LED type (mm in) [Lens on both sides] (Note 2)			
						Fiber Mode	U-LG	STD	FAST
						FT-43	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-42	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-42W	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-45X	1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	1,600 62.992 (Note 3)
						FT-R40	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-R41W	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-R43 FT-R44Y	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)	3,600 141.732 (Note 3)
						FT-H35-M2	3,500 137.795 (Note 3)	3,500 137.795 (Note 3)	3,500 137.795 (Note 3)
		FT-H20W-M1				1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	
		FT-H20-M1				1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	1,600 62.992 (Note 3)	
		FT-H13-FM2				3,500 137.795 (Note 3)	3,500 137.795 (Note 3)	3,500 137.795 (Note 3)	
	Side-view lens	FX-SV1		Beam axis is bent by 90°. - Ambient temperature: $\begin{aligned} & -60 \text { to }+300{ }^{\circ} \mathrm{C} \\ & -76 \text { to }+572{ }^{\circ} \mathrm{F} \end{aligned}$ (Note 5) - Beam dia: $\varnothing 2.8 \mathrm{~mm}$ $\varnothing 0.110$ in	Sensing range for red LED type (mm in) [Lens on both sides] (Note 2)				
						U-LG	STD	FAST	
					FT-43	2,300 90.551	48018.898	35013.780	
					FT-42	2,400 94.488	45017.717	33012.992	
					FT-42W	2,800 110.236	60023.622	45017.717	
					FT-45X	1,600 62.992 (Note 3)	53020.866	37014.567	
					$\begin{aligned} & \text { FT-R43 } \\ & \text { FT-R44Y } \end{aligned}$	2,300 90.551	43016.929	32012.598	
					FT-H35-M2	87034.252	2208.661	1606.299	
					FT-H20W-M1	$750 \quad 29.528$	2007.874	1405.512	
					FT-H20-M1	$870 \quad 34.252$	2208.661	1606.299	
	Expansion lens for vacuum fiber (Note 1)	FV-LE1		Sensing range increases by 4 times or more. - Ambient temperature: -60 to $+350^{\circ} \mathrm{C}$ -76 to $+662^{\circ} \mathrm{F}$ (Note 5) - Beam dia: $\varnothing 3.6$ mm $\varnothing 0.142$ in	Sensing range for red LED type (mm in) [Lens on both sides] (Note 2, 4)				
			als			U-LG	STD	FAST	
					FT-H30-M1V-S	1,600 62.992	45017.717	30011.811	
	Vacuum resistant side-view lens (Note 1)	FV-SV2		Beam axis is bent by 90°. - Ambient temperature: -60 to $+300^{\circ} \mathrm{C}$ -76 to $+572^{\circ} \mathrm{F}$ (Note 5) - Beam dia: $ø 3.7$ mm $\varnothing 0.146$ in	Sensing range for red LED type (mm in) [Lens on both sides] (Note 2, 4)				
					Fiber Mode	U-LG	STD	FAST	
					FT-H30-M1V-S	1,600 62.992	45017.717	30011.811	

Notes: 1) Be careful sure to use it only after you have adjusted it sufficiently when installing the thru-beam type fiber equipped with the expansion lens, as the beam envelope becomes narrow and alignment is difficult.
2) The sensing ranges are the values for red LED type amplifier. Please contact our office for details on sensing ranges for other types of amplifiers.
3) The fiber cable length practically limits the sensing range.
4) The fiber cable length for the FT-H30-M1V-S is 1 m 3.281 ft . The sensing ranges in U-LG mode take into account the length of the FT-J8 atmospheric side fiber.
5) Refer to "Fiber Selection p.5~" for the ambient temperatures of fibers to be used in combination.

Lens (For reflective type fiber)

Designation		Model No.		Description			
	Pinpoint spot lens	FX-MR7		Extremely fine spot of $\varnothing 0.1 \mathrm{~mm} \varnothing 0.004$ in approx. achieved. - Applicable fibers: FD-R33EG, FD-EG31, FD-R34EG, FD-R32EG, FD-EG30, FD-R31G, FD-42G, FD-42GW, FD-32G, FD-32GX - Ambient temperature: -55 to $+70^{\circ} \mathrm{C}-67$ to $+158^{\circ} \mathrm{F}$ (Note 2)	Sensing range for red LED type (mm in) (Note 1)		
					Fiber	Distance to focal point	Spot diameter
					$\begin{array}{\|l} \hline \text { FD-R33EG } \\ \text { FD-EG31 } \\ \hline \end{array}$	$7 \pm 0.50 .276 \pm 0.020$	ø0.1 00.004 approx.
					FD-R34EG	$7 \pm 0.50 .276 \pm 0.020$	$\varnothing 0.15 \varnothing 0.006$ approx.
					$\begin{array}{\|l} \hline \text { FD-R32EG } \\ \text { FD-EG30 } \\ \hline \end{array}$	$7 \pm 0.50 .276 \pm 0.020$	$ø 0.2 ø 0.008$ approx.
					FD-R31G FD-42G/42GW FD-32G/32GX	$7 \pm 0.50 .276 \pm 0.020$	$ø 0.4$ ø0.016 approx.
					Sensing range for	r red LED type (mm in) (Note 1)
				approx. achieved.	Fiber	Distance to focal point	Spot diameter
		FX-MR6		FD-EG31, FD-EG30, FD-42G	FD-EG31	$7 \pm 0.50 .276 \pm 0.020$	$ø 0.1$ ø0.004 approx.
				FD-42GW, FD-32G, FD-32GX	FD-EG30	$7 \pm 0.50 .276 \pm 0.020$	$ø 0.2$ ø0.008 approx.
				- Ambient temperature: $-20 \text { to }+60^{\circ} \mathrm{C}-4 \text { to }+140^{\circ} \mathrm{F} \text { (Note 2) }$	$\begin{array}{\|l\|} \hline \text { FD-42G/42GW } \\ \text { FD-32G/32GX } \end{array}$	$7 \pm 0.50 .276 \pm 0.020$	$ø 0.4$ ø0.016 approx.
					Sensing range f	for red LED type ((mm in) (Note 1)
				approx. achieved.	Fiber	Distance to focal point	Spot diameter
		FX-MR3		- Applicable fibers: FD-EG31, FD-EG30, FD-42G,	FD-EG31	$7.5 \pm 0.50 .295 \pm 0.020$	$\varnothing 0.15 \varnothing 0.006$ approx.
				FD-42GW, FD-32G, FD-32GX	FD-EG30	$7.5 \pm 0.50 .295 \pm 0.020$	$ø 0.3 \varnothing 0.012$ approx.
				- Ambient temperature: $-40 \text { to }+70^{\circ} \mathrm{C}-40 \text { to }+158^{\circ} \mathrm{F} \text { (Note 2) }$	$\begin{aligned} & \text { FD-42G/42GW } \\ & \text { FD-32G/32GX } \end{aligned}$	$7.5 \pm 0.50 .295 \pm 0.020$	$ø 0.5$ ø0.020 approx.
	Zoom lens	FX-MR8		The spot diameter is adjustable according to how much the fiber is screwed in. - Applicable fibers: FD-R33EG, FD-EG31, FD-R34EG, FD-R32EG, FD-EG30, FD-R31G, FD-42G, FD-42GW, FD-32G, FD-32GX - Ambient temperature: -55 to $+70^{\circ} \mathrm{C}-67$ to $+158^{\circ} \mathrm{F}$ (Note 2)	Sensing range for red LED type (mm in) (Note 1)		
					Fiber	Sensing range	Spot diameter
흔					$\begin{aligned} & \hline \text { FD-R33EG } \\ & \text { FD-EG31 } \\ & \hline \end{aligned}$	10 to 300.394 to 1.181	004.4002.00001616000.79 appox.
$\stackrel{0}{2}$					FD-R34EG	10 to 300.394 to 1.181	004,40022000.16 6000.087 appox.
$\stackrel{\text { P }}{\substack{0}}$					$\begin{array}{\|l} \hline \text { FD-R32EG } \\ \text { FD-EG30 } \\ \hline \end{array}$	10 to 300.394 to 1.181	00.5002.500.020 0000.098 appox.
					$\begin{array}{\|l\|} \hline \text { FD-R31G } \\ \text { FD-42G/42GW } \\ \text { FD-32G/32GX } \\ \hline \end{array}$	10 to 300.394 to 1.181	00.8003.5000.331 1000.138 appox.
	Parallel light lens	FX-MR9		Long-range parallel light - Applicable fibers: FD-R33EG, FD-EG31, FD-R34EG, FD-R32EG, FD-EG30, FD-R31G, FD-42G, FD-42GW, FD-32G, FD-32GX - Ambient temperature: -55 to $+70^{\circ} \mathrm{C}-67$ to $+158^{\circ} \mathrm{F}$ (Note 2)	Sensing range for red LED type (mm in) (Note 1)		
					Fiber	Sensing range	Spot diameter
					$\begin{array}{\|l\|} \hline \text { FD-R33EG } \\ \text { FD-EG31 } \\ \hline \end{array}$	0 to 300 to 1.181	ø4.0 $\varnothing 0.016$ approx.
					FD-R34EG	0 to 300 to 1.181	$\varnothing 4.0 \propto 0.016$ approx.
					$\begin{array}{\|l} \hline \text { FD-R32EG } \\ \text { FD-EG30 } \\ \hline \end{array}$	0 to 300 to 1.181	ø4.0 00.016 approx.
					$\begin{array}{\|l\|} \hline \text { FD-R31G } \\ \text { FD-42G/42GW } \\ \text { FD-32G/32GX } \\ \hline \end{array}$	0 to 300 to 1.181	ø4.0 00.016 approx.
	Pinpoint spot lens	FX-MR1		Pinpoint spot of $\varnothing 0.5 \mathrm{~mm} \varnothing 0.020 \mathrm{in}$. Enables - Distance to focal point: $6 \pm 1 \mathrm{~mm} 0.236 \pm 0$. - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$	s detection of min 0.039 in $0 \text { to }+158^{\circ} \mathrm{F} \text { (Note }$	nute objects or sma e 2)	all marks.
	Zoom lens	FX-MR2		The spot diameter is adjustable from $\varnothing 0.7$ to $\varnothing 2 \mathrm{~mm} \varnothing 0.028$ to $\varnothing 0.079$ in according to how much the fiber is screwed in. - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$ (Note 1) - Accessory: MS-EX3 (mounting bracket)	Sensing range for red LED type (mm in) (Note 1)		
					Screw-in depth	Distance to focal point	Spot diameter
					70.276	ø18.5 $\varnothing 0.728$ approx.	ø0.7 ø0.028
					120.472	ø27 ¢1.063 approx.	$ø 1.2$ ø0.047
					140.551	¢43 ¢1.693 approx.	ø2.0 ø0.079
	Zoom lens $\binom{$ Side-view }{ type }	FX-MR5		FX-MR2 is converted into a side-view type and can be mounted in a very small space. - Applicable fibers: FD-42G, FD-42GW - Ambient temperature: -40 to $+60^{\circ} \mathrm{C}-40$ to $+140^{\circ} \mathrm{F}$ (Note 2)	Sensing range for red LED type (mm in) (Note 1)		
					Screw-in depth	Distance to focal point	Spot diameter
					80.315	130.512 approx.	ø0.5 ø0.020
					100.394	150.591 approx.	ø0.8 ø0.031
					140.551	301.181 approx.	$ø 3.0$ ø0.118

Notes: 1) The sensing ranges are the values when used in combination with red LED type amplifier. Please contact our office for details on sensing ranges for other types of amplifier.
2) Refer to p.16, p.18, p. 26 and p. 27 for the ambient temperatures of fibers to be used in combination

FIBER OPTIONS
Refer to $\mathrm{p} .81 \sim$ for details of lens dimensions.

Model No. when ordering heat-resistant fibers individually as replacement parts

\author{

- Heat-resistant side fiber
 FT-H20-J20 (one pair set), FT-H20-J30 (one pair set), FT-H20-J50 (one pair set), FT-H20-VJ50 (one pair set), FT-H20-VJ80 (one pair set)
}
- Ordinary temperature side fiber

FT-42 (one pair set)
Model No. when ordering vacuum-resistant fibers individually as replacement parts

- Vacuum-resistant fiber
FT-H30-M1V (one pair set)
FD-H30-KZ1V
FD-H30-L32V
- Photo-terminal
FV-BR1 (one pair set)
- Fiber at atmospheric side FT-J8 (one pair set)
- Mouting bracket for FD-H30-KZ1V(-S) MS-FD-2

Model No. when ordering accessories additionally

- RF-003 (Reflector for FR-KZ50E/KZ50H)
- RF-13 (Reflective tape for FR-Z50HW)
- FX-CT2 (Fiber cutter)
- FX-CT3 $\binom{$ Fiber cutter for $\varnothing 1 \mathrm{~mm} \varnothing 0.039 \mathrm{in} / \varnothing 1.3 \mathrm{~mm} \varnothing 0.051$ in }{ fiber cable / $\varnothing 4 \mathrm{~mm} \varnothing 0.157$ in protective tube }
- FX-CT4 ($\left.\begin{array}{l}\text { Fiber cutter for } \varnothing 2 \mathrm{~mm} ø 0.079 \text { in fiber cable / } \\ \varnothing 4 \mathrm{~mm} \varnothing 0.157 \text { in protective tube }\end{array}\right)$
- FX-AT2 (Attachment for fixed-length fiber, Orange)
- FX-AT3 (Attachment for ø2.2 mm ø0.087 in fiber, Clear orange)
- FX-AT4 (Attachment for $\varnothing 1 \mathrm{~mm} \varnothing 0.039$ in fiber, Black)
- FX-AT5 (Attachment for $\varnothing 1.3 \mathrm{~mm} \varnothing 0.051$ in fiber, Gray)
- FX-AT6 Attachment for $\varnothing 1 \mathrm{~mm} \varnothing 0.039$ in /
$\varnothing 1.3 \mathrm{~mm} ø 0.051$ in mixed fiber, Black / Gray
- FX-AT4G1 (Gland single for $\varnothing 1 \mathrm{~mm} \varnothing 0.039$ in fiber, Black)
- FX-AT5G1 (Gland single for $\varnothing 1.3 \mathrm{~mm} ø 0.051$ in fiber, Gray)
- FX-AT6G1 Gland single for $\varnothing 1 \mathrm{~mm} \varnothing 0.039$ in / ($1.3 \mathrm{~mm} \varnothing 0.051$ in mixed fiber, Black / Gray
- FX-SL1 ((one pair set) Slit mask for FT-A11 / FT-A11W, slit size: $0.5 \times 12 \mathrm{~mm} 0.020 \times 0.472$ in
- FX-SL2 ((one pair set) Slit mask for FT-A11 / FT-A11W, slit size: $1 \times 12 \mathrm{~mm} 0.039 \times 0.472$ in
- FX-SL3 ($\left.\begin{array}{l}\text { (one pair set) Slit mask for FT-A11 / FT-A11W, } \\ \text { slit size: } 0.5 \times 33 \mathrm{~mm} 0.020 \times 1.299 \text { in }\end{array}\right)$
- MS-FD-2 (Fiber mounting bracket)

-MS-FD-2

Others

SPECIFICATIONS

		NPN output			PNP output		
		Red LED	Blue LED	Green LED	Red LED	Blue LED	Green LED
		FX-411	FX-411B	FX-411G	FX-411P	FX-411BP	FX-411GP
		FX-412 (Note 2)	FX-412B (Note 2)	FX-412G (Note 2)			
CE marking directive compliance		EMC Directive, RoHS Directive					
Supply voltage		12 to 24 V DC ± 10 \% Ripple P-P 10% or less					
Power consumption		<Red LED type> Normal operation: 960 mW or less (Current consumption 40 mA or less at 24 V supply voltage) ECO mode: 840 mW or less (Current consumption 35 mA or less at 24 V supply voltage) <Blue LED / Green LED type> Normal operation: 720 mW or less (Current consumption 30 mA or less at 24 V supply voltage) ECO mode: 580 mW or less (Current consumption 24 mA or less at 24 V supply voltage)					
Output		<NPN output type> NPN open-collector transistor - Maximum sink current: 100 mA $\binom{50 \mathrm{~mA}$, if five, or more, amplifiers }{ are connected in cascade } - Applied voltage: 30 V DC or less (between output and 0 V) - Residual voltage: 1.5 V or less $\left[\begin{array}{l} \text { at } 100 \mathrm{~mA} \text { sink current } \\ \binom{50 \mathrm{~mA} \text {, if five, or more, amplifiers }}{\text { are connected in cascade }} \end{array}\right]$			<PNP output type> PNP open-collector transistor - Maximum source current: 100 mA $\binom{50 \mathrm{~mA} \text {, if five, or more, amplifiers }}{\text { are connected in cascade }}$ - Applied voltage: 30 V DC or less (between output and +V) - Residual voltage: 1.5 V or less at 100 mA sink current $\binom{50 \mathrm{~mA}$, if five, or more, amplifiers }{ are connected in cascade }$]$		
	Utilization category	DC-12 or DC-13					
	Output operation	Switchable either Light-ON or Dark-ON					
	Short-circuit protection	Incorporated					
Response time		150μ s or less (FAST), 500μ s or less (STD), 4.5 ms or less (U-LG) selectable with setting switch					
Operation indicator		Orange LED (lights up when the output is ON)					
Stability indicator		Green LED (lights up under stable light received condition or stable dark condition)					
Timer function		Incorporated with variable ON-delay / OFF-delay / ONE SHOT timer, switchable either effective or ineffective. $\left[\begin{array}{l}\text { Timer period (Note 3): } 1 \mathrm{~ms} \text { to } 3 \mathrm{sec} \text {. approx. (} 1 \text { to } 10 \mathrm{~ms} \text { : Setting possible in units of } 1 \mathrm{~ms}, 10 \text { to } 100 \mathrm{~ms} \text { : Setting possible in units of } 10 \mathrm{~ms}, \\ 100 \text { to } 500 \mathrm{~ms} \text { : Setting possible in units of } 50 \mathrm{~ms}, 500 \mathrm{~ms} \text { to } 1 \text { sec.: Setting possible in units of } 100 \mathrm{~ms}, 1 \text { to } 3 \text { sec.: Setting possible in units of } 500 \mathrm{~ms} \text {) }\end{array}\right]$					
Automatic interference prevention function		Incorporated (Up to four sets of fiber heads can be mounted close together. However, U-LG mode is 8 fiber heads.)(Note 4)					
	Pollution degree	3 (Industrial environment)					
	Ambient temperature	$\begin{aligned} & -10 \text { to }+55^{\circ} \mathrm{C}-14 \text { to }+131^{\circ} \mathrm{F}\binom{\text { If } 4 \text { to } 7 \text { units are connected in cascade: }-10 \text { to }+50^{\circ} \mathrm{C}+14 \text { to }+122{ }^{\circ} \mathrm{F},}{\text { if } 8 \text { to } 16 \text { units are connected in cascade: }-10 \text { to }+45^{\circ} \mathrm{C}+14 \text { to }+113^{\circ} \mathrm{F}} \\ & \text { (No dew condensation or icing allowed), Storage: }-20 \text { to }+70^{\circ} \mathrm{C}-4 \text { to }+158^{\circ} \mathrm{F} \end{aligned}$					
	Ambient humidity	35 to 85 \% RH, Storage: 35 to 85 \% RH					
	Ambient illuminance	Incandescent light: $3,000 \mathrm{~lx}$ or less at the light-receiving face					
	Voltage withstandability	$1,000 \mathrm{~V}$ AC for one min. between all supply terminals connected together and enclosure (Note 5)					
	Insulation resistance	$20 \mathrm{M} \Omega$, or more, with 250 V DC megger between all supply terminals connected together and enclosure (Note 5)					
	Vibration resistance	10 to 150 Hz frequency, 0.75 mm 0.030 in double amplitude in X, Y and Z directions for two hours each					
	Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (10 G approx.) in X, Y and Z directions five times each					
Emitting element (modulated)		Red LED	Blue LED	Green LED	Red LED	Blue LED	Green LED
	Peak emission wavelength	650 nm 0.026 mil	470 nm 0.019 mil	525 nm 0.021 mil	650 nm 0.026 mil	470 nm 0.019 mil	525 nm 0.021 mil
Material		Enclosure: Heat-resistant ABS, Case cover: Polycarbonate					
Cable length		Total length up to 100 m 328.084 ft (50 m 164.042 ft for 5 to 8 units, 20 m 65.617 ft for 9 to 16 units) is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable.					
Weight		Net weight: 20 g approx., Gross weight: 30 g approx.					

Notes: 1) Where measurement conditions have not been specified precisely, the conditions used were an ambient temperature of $+23^{\circ} \mathrm{C}+73.4^{\circ} \mathrm{F}$.
2) The FX-412 \square has a threshold value adjuster that can be adjusted with your fingers.
3) For models manufactured up until June 2005, the timer period is approx. 1 to 500 ms .
4) When the power supply is switched on, the light emission timing is automatically set for interference prevention.
5) The voltage withstandability and the insulation resistance values given in the above table are for the amplifier only.

Part description

Wiring

- Make sure that the power supply is off while wiring.
- Verify that the supply voltage variation is within the rating.
- Take care that if a voltage exceeding the rated range is applied, or if an AC power supply is directly connected, the product may get burnt or damaged.
- In case noise generating equipment (switching regulator, inverter motor, etc.) is used in the vicinity of this product, connect the frame ground (F.G.) terminal of the equipment to an actual ground.
- If power is supplied from a commercial switching regulator, ensure that the frame ground (F.G.) terminal of the power supply is connected to an actual ground.
- Take care that short circuit of the load wrong wiring may burn or damage the product.
- Do not run the wires together with high-voltage lines or power lines or put them in the same raceway. This can cause malfunction due to induction.
- Extension up to total 100 m 328.084 ft (if 5 to 8 units are connected in cascade: 50 m 164.042 ft , if 9 to 16 units are connected in cascade: 20 m 65.617 ft) is possible with $0.3 \mathrm{~mm}^{2}$, or more, cable. However, in order to reduce noise, make the wiring as short as possible.
- Take care that cable extension increases the residual voltage.

Mounting

- Make sure that the power supply is off while connecting/disconnecting the amplifiers and the quickconnection cables.

How to mount the amplifier

(1) Fit the rear part of the mounting section of the amplifier on a width DIN rail.
(2) Press down the rear part of the mounting section of the unit on the width DIN rail and fit the front part of the mounting section to the DIN rail.

35 mm 1.378 in width DIN rail

How to remove the amplifier

(1) Push the amplifier forward.
(2) Lift up the front part of the amplifier to remove it.

Note: Take care that if the front part is lifted without pushing the amplifier forward, the hook on the rear portion of the mounting section is likely to break.

Fiber installation

- Insert the fiber into the amplifier after attaching the attachment. Refer to the "Instruction Manual" included with the fiber for details.
(1) Push the fiber lock lever down.
(2) Slowly insert the fiber into the insertion slot until it stops. (Note 1)
(3) Push the fiber lock lever back up until it stops.

Notes: 1) Note that if the fiber is not fully inserted, the sensing distance will decrease. Also note that the bending-resistant fiber may bend during insertion.
2) In case of coaxial reflective type fibers, mount the central fiber (single-core) to the emitter part and the peripheral fiber (multi-core) to the receiver. Note that sensing precision will deteriorate when done in reverse.

Cascading

- Make sure that the power supply is off while adding or removing the amplifiers.
- Make sure to check the allowable ambient temperature, as it depends on the number of amplifiers connected in cascade.
- In case two, or more, amplifiers are connected in cascade, make sure to mount them on a DIN rail.
-When the amplifiers move on the DIN rail depending on the attaching condition or the amplifiers are mounted close to each other in cascade, fit them between the optional end plates (MS-DIN-E) mounted at the two ends.
- Up to maximum 15 amplifiers can be added (total 16 amplifiers connected in cascade.)
- When connecting more than two amplifiers in cascade, use the sub cable (CN-71-C\square) as the quickconnection cable for the second amplifier onwards.
- When connecting amplifiers not close to each other in parallel, be sure to mount the optional end plate
(MS-DIN-E) at both sides of each amplifier or affix the communication window seal of the optional fiber amplifier protection seal (FX-MB1) to the communication windows. For details, refer to the instruction manual enclosed with the FX-MB1.
- When the different LED (red / blue / green) types are connected in cascade, mount the identical models together.
- When this product is used with the other digital fiber amplifiers, be sure to place this product to the left most position (When you look from the connector side). If this product is not placed to the leftmost position, this product may not operate properly.

Cascading method

(1) Mount the amplifiers, one by one, on the DIN rail.
(2) Slide the amplifiers next to each other, and connect the quick-connection cables.
(3) Mount the optional end plates
(MS-DIN-E) at both the ends to hold the amplifiers between their flat sides.
(4) Tighten the screws to
 fix the end plates.

Dismantling

(1) Loosen the screws of the end plates.
(2) Remove the end plates.
(3) Slide the amplifiers and remove them one by one.

Switching output operation

- The operation selection switch can be used to display different output operations (L-ON / D-ON) on the digital display.

When set to Dark-ON (D-ON)

When set to Light-ON (L-ON)

Threshold value (sensitivity) adjustment

(1) Check the incident light intensity [in the digital display (red)] when a sensing object
 is placed in the sensing position.
(2) Check the incident light intensity [in the digital display (red)] when the sensing object is removed from the sensing position.
(3) Turn the threshold value adjuster to the threshold value [in the digital display (green)] that is the value in between (1) and (2). (The threshold value is automatically written to the EEPROM.)

Threshold value setting method

- When the threshold value adjuster is turned clockwise, the threshold value increases. When the threshold value adjuster is turned counterclockwise, the threshold value decreases.

- If there is a sufficient level of margin in the incident light intensity, the stability indicator (green) will light up.

Mode selection

- When the setting switch is pressed and held for 2 sec . or more, "SET" mode (mode setting screen) is activated.
- If the setting switch is pressed while in "SET" mode, the mode will change.
- If the threshold value adjuster is turned while a mode is active, the setting item will change and blink.
- When the setting switch is pressed at the item you would like to set, it blinks 3 times and then the setting is confirmed and the mode switches to the next mode.
- If the setting switch is pressed and held for 2 sec. or more or do not press any key for 15 sec . while "SET" mode is active, the mode will switch automatically to "RUN" mode.

PRECAUTIONS FOR PROPER USE

Mode table

Mode	Factory setting	Description
Response time change mode	5016 石回	The response time can be set．
Light－emitting amount selection mode（Note 1）	最上湿别	The light－emitting amount can be switched among four levels．
Timer setting mode	佔高 ran	Timer settings can be selected；Without timer／ OFF－delay timer／ON－delay timer／ONE SHOT timer．Also the timer period can be set．
Digita display inversion mode	Eun art	The display on the digital display can be inverted．
Eco mode（Note 2）	Ena	If no key is pressed for 20 sec．approx． while in＂RUN＂mode，the digital display turns off automatically．Press the setting switch or move the operation mode switch to make the display light up again．The digital display will light up when the threshold value adjuster is turned，but note that this will also cause the threshold value to change．
Peak／Bottom hold mode	Hata dit	If the setting switch is pressed while ＂RUN＂mode is active，the display will alternate between the peak hold value and the bottom hold value．（The display will refresh every 2 sec．）The display will return to normal if any operation other than threshold value setting is carried out．

Notes：1）This mode is not incorporated in the blue LED type and green LED type． 2）While the peak／bottom hold mode is ON，the digital display is not turned off even if the Eco mode is set to ON．

Key lock function

－When the setting switch is pressed and hold for 5 sec．while in＇RUN＇mode， the key lock function can be set／canceled．
－When the key lock function is set to ON，even if the threshold value adjuster or

the setting switch is operated，＂D＂is displayed and the key operation cannot be carried out．
Note：Although the display changes to the indication of＇SET＇condition 2 sec．after pressing the setting switch，keep pressing the switch． Furthermore，the sensor does not go into the key lock setting from ＇SET＇condition．

Factory setting

－When the setting switch is pressed and held for 10 sec．， until＂－－－－－－－－＂is displayed while in＇RUN＇mode，the all settings are returned to the factory setting． （For the factory setting，refer to＇Mode table＇in＇Mode selection＇．）

Error display indicator readings

Display	Error description	Measures
Er－	The load has short－circuited and excess current is flowing．	Turn off the power，then check the load．

Others

－This product has been developed／produced for industrial use only．
－Do not use during the initial transient time（ 0.5 sec ．）after the power supply is switched on．
－This sensor is suitable for indoor use only．
－Do not use this sensor in places having excessive vapor， dust，etc．，or where it may come in contact with corrosive gas．
－Take care that the sensor does not come in direct contact with oil，grease，organic solvents，such as，thinner etc．，or strong acid，and alkaline．
－This sensor cannot be used in an environment containing inflammable or explosive gases．
－Never disassemble or modify the sensor．
－The changes to the settings are written to the EEPROM， but because the EEPROM has a limited service life，you should avoid changing the settings any more than 1 million times．

CN-71-C1 CN-71-C2 CN-71-C5 Sub cable (Optional)

- Length L

Model No.	Length L	
CN-71-C1	1,000	39.370
CN-71-C2	2,000	78.740
CN-71-C5	5,000	196.850
2.54		

CN-73-C1 CN-73-C2 CN-73-C5 Main cable (Optional)

$\begin{array}{l}\text { Selection } \\ \text { Guide }\end{array}$
Fibers
Fiber
Amplifiers
$\begin{array}{l}\text { Other } \\ \text { Products }\end{array}$
FX-500
FX-550
FX-100
FX-410

[^0]: * Ṙotation Ṡpeed Ṡensitivity

