SF1 $-\mathbf{A}_{\text {serens }}$

20mm Beam Pitch

World-wide Coverage of Safety Requirements
The SF1-A series are UL listed according to UL 491 along with conforming to OSHA 1910.217 safety requirement for press machinery in the U.S., CE marked along the certification by TÜV in compliance with prEN50100-1 European safety requirement, and approved as the CSA (Canadian Standards Association) certified products, and as the products conforming to AS4024-2 Australian standard.

- UL listed with conforming to OSHA
- CE marked with conforming to EN standard Machine directive
- AS standard conformity
- CSA standard conformity
[The SF1-AC2 is also UL listed with OSHA con-] formity, CE marked with prEN50100-1 compliance, and CSA approved.

20 mm Beam Pitch/Minimum Sensing Object : $\phi 30 \mathrm{~mm}$
The narrow 20 mm beam pitch, the half of conventional type, offers the highest performance able to detect a minimum $\phi 30 \mathrm{~mm}$ opaque object.

Automatic Sensitivity Compensation

SF1-A series constantly maintains the optimum sensitivity according to your setting distance and the sensing condition. The sensitivity is automatically gained if the incident beam intensity decreases by dirt, dust, mist or oil on the sensing face. It also makes the sensor insusceptible to any ambient beam such as other sensor's beam, or the glare of welding.

Wide Variation

There are eight types of sensor units in height from 140 mm (8 beam channels) to $1,260 \mathrm{~mm}$ (64 beam channels). The spatter-protection model is also available in each height that protects the sensing face against welding spatters by the hood.
Two types of control units support sensor units, AC power control units SF1-AC and DC power control units SF1-AC2.

Supreme Fail-safe Design

The SF1-A system always check there is no internal circuit failure, no cable breakage, nor incident ambient light. If any error insists, the system turns the FSD relays OFF to force a machine to stop. Whatever malfunction occurs, the perfect fail-safe design forces the output into the same state as when the beam is interrupted.

(*1) : The sensor perfects the output operation normally even under the insufficient beam receiving.

APPLICATIONS

Safe guards on assembly machines

Safe guard on miniature injection machine

ORDER GUIDE

Sensor units

Type	Appearance	Sensing range	Model No.	Number of beam channels	Sensing height (mm)
		5 m	SF1-A8	8	140
			SF1-A16	16	300
			SF1-A24	24	460
			SF1-A32	32	620
			SF1-A40	40	780
			SF1-A48	48	940
			SF1-A56	56	1,100
			SF1-A64	64	1,260
			SF1-A8-H	8	140
			SF1-A16-H	16	300
			SF1-A24-H	24	460
			SF1-A32-H	32	620
			SF1-A40-H	40	780
			SF1-A48-H	48	940
			SF1-A56-H	56	1,100
			SF1-A64-H	64	1,260

No mating cable is attached to the sensor unit and the control unit. Please order it separately.

Use the sensor unit and the control unit together.

Control units

Type	Appearance	Model No.	Supply voltage
		SF1-AC	100 to 240 V AC
		SF1-AC2	24 V DC $\pm 15 \%$

ORDER GUIDE

Mating cables

Spare parts

- For sensor unit

Designation	Model No.	Description	
	FC-SF1-8	For 8 beam channels	
	FC-SF1-16	For 16 beam channels	
	FC-SF1-24	For 24 beam channels	
	FC-SF1-32	For 32 beam channels	
	FC-SF1-40	For 40 beam channels	

(*1) : The product assigned with the above model No. consists of one single unit only, not a pair of units.

- For control unit

Designation	Model No.	Description
Lockout release key (For SF1-AC)	NA-BC-K3	Two keys a set
Front-cover open key (For SF1-AC)	NA-BC-K2	
Test rod	SF1-AC-TL	Beam alignment test piece
System information plate (Attached to SF1-AC)	MEHS-SF1A	"The overall system response time", "The minimum separation distance", and "The appropriate test piece diameter" are shown
Relay replacement circuit board (For SF1-AC)	SF1-AC-RU	SF1-AC relay replacement circuit board
Relay replacement circuit board (For SF1-AC2)	SF1-AC2-RU	SF1-AC2 relay replacement circuit board
Fuse	SF1-AC-F	Control unit fuse

OPTION

Designation	Model No.	Description
		With the large indicators put on the sensor unit, the operation is remarkably observable.

Large indicator

The slit mask restrains the amount of the beam emitted or received. Replace the original front cover with the slit mask. Remove the front cover and put the slit mask on the sensor.
The slit mask is used to reduce the beam intensity so that the sensing range becomes shorter than the range without it For more details, contact us.

Applicable beam channels		8 beam channels	16 beam channels	24 beam channels	32 beam channels	40 beam channels	48 beam channels	56 beam channels	64 beam channels
Slit mask	Model No.	OS-SF1-8	OS-SF1-16	OS-SF1-24	OS-SF1-32	OS-SF1-40	OS-SF1-48	OS-SF1-56	OS-SF1-64

(*1) : The product assigned with the above model No. consists of one single unit only, not a pair of units.
\qquad

(*1) : The indicators on the receiver reveal the incident beam intensity level as follows.

Control units

TypeItem		AC power operation	DC power operation
		SF1-AC	SF1-AC2
Applicable sensor units		SF1-A \square, SF1-A \square-H	
Supply voltage		100 to 240 V AC 50 to 60 Hz	24V DC $\pm 15 \%$ Ripple P-P 10\% or less
Power consumption		24 VA or less (including the sensor unit)	
Current consumption		\longrightarrow	1A or less (including the sensor unit)
Sensing output (FSD1, FSD2)		Relay contact 1a (Two outputs) - Switching capacity : 250V 1.5 A AC (resistive load) 30V 3A DC (resistive load) - Electrical life : 100,000 operations or more (rated load, switching frequency 20 cycles/min.) - Mechanical life : $10,000,000$ operations or more (switching frequency 180 cycles/min.)	Relay contact 1a (Two outputs) -Switching capacity : 30V 3A DC (resistive load) - Electrical life : 100,000 operations or more (rated load, switching frequency 20 cycles/min.) - Mechanical life : $10,000,000$ operations or more (switching frequency 180 cycles/min.)
	Utilization category	DC-12 or DC-13	
	Output operation	ON (closed) when all beams are received/OFF (open) when one or more beams are interrupted In case that any failure happens or the system goes into the lockout condition, the output relays are turned off. (*1)	
	Response time	20 ms or less (including sensor's response time)	
Lockout output (SSD)		Relay contact 1a - Switching capacity : 250V 1.5A AC (resistive load) 30V 3A DC (resistive load) - Electrical life : 100,000 operations or more (rated load, switching frequency 20 cycles/min.) - Mechanical life : $10,000,000$ operations or more (switching frequency 180 cycles/min.)	
	Output operation	ON (closed) in the normal condition/OFF (open) in the lockout condition (*2)	\longrightarrow
	Response time	500 ms or less	
Monitor output			Relay contact 1b - Switching capacity : 30V 3A DC (resistive load) - Electrical life : 100,000 operations or more (rated load, switching frequency 20 cycles/min.) - Mechanical life : $10,000,000$ operations or more (switching frequency 180 cycles/min.)
	Output operation		ON (open) when all beams are received OFF (closed) when one or more beams are interrupted In case that any failure happens or the system goos int the lockout condition, the output relay is turned of ('3)
	Response time		20 ms or less
Input		Develop short-circuit with a contact - Lockout release input: Shor-c-circuit between terminals, and the lockout is released - External Iockout input : Open between terminals, and the system goes into the lockout condition - External FSD-OFF input : Short between terminals, and FSDs are turned off - Monitor input : The system goes into the lockout condition when MPCEs are not coincident with the status of FSDs (double circuits)	Develop short-circuit with a contact - Test input : Open between terminals, and stop emission - Restart input : Short-circuit between terminals, and sensing output is activated - Monitor input : The system goes into the lockout condition when MPCEs are not coincident with the status of FSDs (double circuits)
Indicator		Power indicator : White LED (lights up while the power is supplied) Lockout output indicator : White LED (lights up in the lockout condition) FSD operation indicator: Yellow LED (lights up when FSDs are not activated)	Power indicator : Yellow LED (lights up while the power is supplied) Incident beam indicator: Green LED (lights up when the sensing output is activated) FSD operation indicator : Red LED (lights up when the sensing output is not activated) ※All indicators light up in the lockout condition
	Pollution degree	3 (Industrial environment)	
	Protection	IP65 (IEC)	
	Ambient temperature	-10 to $+55^{\circ} \mathrm{C}$ (No dew condensation nor icing allowed), Storage : -10 to $+60^{\circ} \mathrm{C}$	
	Ambient humidity	35 to 85% RH, Storage : 35 to 85% RH	
	EMC	Emission • Immunity : prEN50100-1	
	Voltage withstandability	1,500V AC for one min. between AC inputs and DC outputs	$1,500 \mathrm{~V}$ AC for one min. between DC inputs and DC outputs
	Insulation resistivity	$20 \mathrm{M} \Omega$ or more at 500 V DC Megger between AC inputs and DC outputs	$20 \mathrm{M} \Omega$ or more at 500 V DC Megger between DC inputs and DC outputs
	Vibration-proof	10 to 55 Hz frequency, 2 G constant, and X, Y, and Z directions each for one hour (unenergized)	
	Shock-proof	$100 \mathrm{~m} / \mathrm{s}^{2}$ acceleration (approx. 10G), and X, Y, and Z directions each for three times (unenergized)	
Material		Mild iron steel plate	Aluminum die-casted
Weight		Approx. 3.5 kg	Approx. 2kg
Accessories		SF1-AC-TL (Test rod) : 1pc., NA-BC-K2 (Front-cover open key) : 1pc. NA-BC-K3 (Lockout release key) : 1pc., MEHS-SF1A (System information plate) : 1pc.	SF1-AC-TL (Test rod) : 1pc., Cable conduit : 1pc.

(*1) : On the following conditions, the FSDs (sensing output) are turned off. (1)When one or more beams are interrupted. [unless the sensor unit is muted. (SF1-AC only)] (2) When the sensor unit falls into an abnormal condition. (sensor failure)[unless the sensor unit is muted. (SF1-AC only)]
(3)When the sensor unit receives an intense ambient light. [unless the sensor unit is muted. (SF1-AC only)]
(4) When the sensor unit cable or the mating cable is broken or shortcircuited. [unless the sensor unit is muted. (SF1-AC only)]
(5) When the external FSD-OFF input is short-circuited (SF1-AC only). (6)When the test input is opened. (SF1-AC2 only)
(*2) : On the following conditions, the SSD (lockout output) is turned off. (1)When the system is initiated or reactivated by power-up.
(2) When one FSD relay fails. (e.g.) A relay contact is welded.
(3)When one MPCE relay fails. (e.g.) A relay contact is welded.
(4) When the dual circuits in SF1-AC cause different result.
(5) When the external lockout input is opened (SF1-AC only)
(6) When the operation of the MPCEs contradicts with the mode (N.O./ N.C.) set with the MPCE mode switch.
(*3) : On the following conditions, the monitor output is turned off.
(1)When one or more beams are interrupted.
(2)When the sensor unit falls into an abnormal condition.
(3) When the sensor unit receives an intense ambient light.
(4) When the sensor unit cable or the mating cable is broken or shortcircuited.
(5) When the test input is opened. (emission stopped)
(*4) : The muting input (SF1-AC only) cancels the sensor operation so that any beam interruption can not make the FSD output relays open. This function is used to have the sensor inoperable temporarily for feeding a workpiece into a machine or unfeeding it. The input must be carefully manipulated.

I/O CIRCUIT AND WIRING DIAGRAMS

SF1-AC

Block diagram

Glossary of terms

Terms	Description
MPCE $\binom{$ Machine Primary }{ Control Element }	The electrically powered element which directly controls the machine's normal operating motion in such a way that it is last (in time) to operate when motion is initiated or arrested. The SUNX control unit is designed to use two safety relay units as MPCEs.
MSCE $\binom{$ Machine Secondary }{ Control Element }	A machine control element independent of the machine primary control element and capable of removing the source of power from the prime mover of the relevant dangerous parts in an emergency. The SUNX control unit is designed to use one relay as a MSCE.
$\begin{aligned} & \text { FSD (Sensing output) } \\ & \binom{\text { Final Switching }}{\text { Device }} \end{aligned}$	The component of the photoelectric safety system which, when the beam curtain or safety monitoring means are actuated, responds by interrupting the circuit connecting it to a MPCE, machine primary control element. Two relay units are contained in the control unit as FSDs. FSDs are turned off in response to each of the following conditions : (1)When one or more beams are interrupted unless the sensor unit is muted. (2)When the sensor unit falls into an abnormal condition (sensor failure) unless the sensor is muted. (3)When the sensor unit receives an intense ambient light unless the sensor unit is muted. (4) When the sensor unit cable or the mating cable is broken or short-circuited unless the sensor unit is muted. (5) When the external FSD-OFF input is short-circuited.

Terms	Description
SSD (Lockout output) Secondary Switching Device Safety monitor Muting unit The component of the photoelectric safety system chich, in a lockout condition, interrupts the circuit connecting it to the MSCE, machine secondary control element. One relay is built in the control unit. The component of the photoelectric safety system which monitors any inconsistency of action among MPCEs, FSDs and SSD. A facility for automatically switching the safety system into a condition where FSDs, final switching devices, do not respond to an actuation of the sensing unit. The SUNX control unit provides dual terminals for the muting input. The facility has to be prepared by a user if required.	

I/O CIRCUIT AND WIRING DIAGRAMS

SF1-AC
Wiring diagram
Emitter Receiver

I/O CIRCUIT AND WIRING DIAGRAMS

SF1-AC2

Block diagram

Glossary of terms

Terms	\quad Description
MPCE Machine Primary Control Element	The electrically powered element which directly controls the machine's normal operating motion in such a way that it is last (in time) to operate when motion is initiated or arrested. The SUNX control unit is designed to use two safety relay units as MPCEs.
	The component of the photoelectric safety system which, when the beam curtain or safety monitoring means are actuated, responds by interrupting the circuit connecting it to a MPCE, machine primary control element. Two relay units are contained in the control unit as FSDs. FSDs are turned off in response to each of the following conditions: FSD
$\left.\begin{array}{l}\text { Final Switching } \\ \text { Device }\end{array}\right)$	(2)When one or more beams are interrupted. condition (sensor failure). (3)When the sensor unit receives an intense ambient light. (4)When the sensor unit cable or the mating cable is broken or short-circuited.
(5)When the test input terminals are opened (emission stopped).	

Terms	Description
Monitor output	1b contacts of FSD relays connected in series that inform of the FSD status to the external device. The operation responds at the same time as FSD's movement in contrast.
Safety monitor	The component of the photoelectric safety system which monitors any inconsistency of action among MPCEs, and FSDs.

I/O CIRCUIT AND WIRING DIAGRAMS

SF1-AC2

Wiring diagram

SENSING FIELDS (TYPICAL)

Correlation between setting distance and excess gain

Parallel deviation (All models)

Angular deviation (All models)

- To use this product in the U.S.A., refer to OSHA

1910. 212 . 217 . for installation, and in Europe,
refer to prEN999 as well. Observe your national
and local requirements before installing this
product.

- Make sure to use the sensor units with the exclusive control unit and carry out the test run before operating.
- This safety system is for use only on machinery incorporating dangerous parts that can be stopped immediately, either by an emergency stop unit or by disconnecting of the power source. Do not use this system with certain types of machinery incapable of stopping at any point in its machine cycle.
- Check out the dangerous situation at first. Reactivate the system after eliminating the cause of a failure by releasing the lockout condition.
- Be sure to close the front cover on the control unit before operating. Also, the front cover open key of the SF1-AC should always be kept under the supervision of an authorized person.
- The SF1-AC system can only be made active by the key switch. The key should always be kept under the supervision of a responsible, and authorized person.

Mounting

- Use the sensor units with the front cover and the enclosures always. Otherwise, IP protection can not be maintained or a contact failure may occur between modular units.
- The tightening torque of the sensor unit should be $2 \mathrm{~N} \cdot \mathrm{~m}$ $\{20.3 \mathrm{kgf} \cdot \mathrm{cm}\}$ or less. Tighten the control unit at four points as shown below.

SF1-AC

SF1-AC2

MPCE

European standard obliges you to use approved safety relays as MPCEs.

- The MPCE response time is expected to be within 100 ms after FSD is turned OFF/ON. Use the relay of which response time is 100 ms or less.
- Set the MPCE mode switch on the circuit board in the control unit according to the MPCE operation mode.

Wiring

- Prepare the other power source, not to use the power source in the SF1-AC control unit for auxiliary facilities even connected to it. (such as muting unit, stopping performance monitor or so).
- Protect cables with a duct (such as a flexible pipe, a wire tube or so) and separate the sensor unit cables from other cable connected to the control unit with respective ducts.
- The SF1-AC is incorporated with the external lockout input for another safety device.
- The lockout release input of the SF1-AC can act upon several safety devices at one time. Make sure, however, this function is available only when these devices are installed on one machine. Do not use this with several machines.
- Short-circuit the external lockout input terminals of the SF1-AC with the attached short bar when it is not used.
- Cable sizes matching cable conduits must be from $\phi 4$ to $\phi 8 \mathrm{~mm}$ and from $\phi 10$ to $\phi 14 \mathrm{~mm}$.
- The SF1-AC2 provides two connectors on the bottom, in which the sensor unit are connected.

Crosstalk prevention function

- Complete the wiring shown below to install two sets of sensor units adjacently as the illustration on the right. With the SF1-AC control units, connect both INTERLOCK COM. terminals (No. 21) in common, also connect IN terminal (No. 19) of one control unit with OUT terminal (No. 20) of the other control unit. With the SF1-AC2 control units, connect both INTERFERENCE PREVENTION COM. terminals (No. 20) in common, also connect IN terminal (No. 18) of one control unit with OUT terminal (No. 19) of the other control unit.

SF1-AC2

Test input (SF1-AC2 only)

- The emission is halted when the test input terminals (No. 16 and No. 17) are opened. As the monitor output, the supplementary FSD output, responds the signal state of the test input, the automatic remote monitoring system can be established to test if the safe guard system is operable or not away from the machine operating circuitry.

From selection to installation of sensor unit

(1)Determine the hazardous area, in height and length.

(2) Determine the protection area with the sensor unit.

- Access to the hazardous area should only be attained by breaking the sensor's beams.

- Obtain the safety distance (D).

The safety distance (D) from the sensing field to the point of operation is fully specified in OSHA 1910. 217 (U.S.) or prEN999 (EU). Follow the regulation enforced in your country.

(3)Determine the defensible height (sensing height) of sensor units as well as the number of beam channels.
(4)Access to the hazardous area of machinery from any direction not protected by the safe guard must be prevented by fixed or interlocking guards or equally effective measures such as a fixed screen, an access door with a captive fastener or the other safe guard sensor.

(5) Install the sensor units where they can not be affected by the beam reflected on a frame of machinery or a workpiece.

Restart input (SF1-AC2 only)

-While the restart input terminals (No. 14 and No. 15) are short-circuited, the FSD outputs are normally generated. While they are, however opened, the FSD outputs are held in the OFF state once after the beam is interrupted, and not restored by the full beam receiving until the terminals are closed. This function enables a human entering observation system into a dangerous area.

Operation test

- Test the sensor's operation with the accessory test rod as shown below. Make sure the operation indicator (red LED) on a receiver lights up by beam interruption.

Others

- The system delays 500 ms to go into the lockout condition. (The delay time of the MPCE relays is concerned.)
- The transient time duration is 1 sec . after power-up.
- Do not expose the receiver directly to the sun, a beacon, another sensor's emitter, or a fluorescent lamp of rapid starting or high-frequency modulating. These lights may affect the detectability.
- The set of the sensor unit is incorporated with the automatic sensitivity compensation function. While the beam alignment is carried out, the indication and the output may delay to respond to movement of either or both sensor units.
- Fix the system information plate (MEHS-SF1A) on the visible place on a machine permanently after filling the columns of *1 and *2 shown below by a die-stamp. (Not attached to the SF1-AC2)

*1: Stamp the overall system response time of the safety system with a die.
*2 : Stamp the minimum separation distance between hazardous area and sensor units with a die.

Operation matrix

| Designation | Description | | |
| :--- | :--- | :--- | :--- | :--- |
| (1) | Emitting indicator
 (Green LED) | Lights up under the normal emission, blinks
 under the emitting circuit failure. | |
| (2) | Stable incident
 beam indicator
 (Green LED) | Lights up when all
 beams are received
 stably. | (2), (3) and (4) blink one
 another when the receiv- |
| ing circuit fails. | | | |

- To acknowledge the operating conditions of the outputs, and indicators on sensor unit and the control unit

SF1-AC : Lights up : Blink : Lights off \triangle : Uncertain state according to situation \times : Either state locked up according to failure

PRECAUTIONS FOR PROPER USE
Refer to P.682~for general cautions

Operation matrix

- To acknowledge the operating conditions of the outputs, and indicators on sensor unit and the control unit

SF1-AC2 : Lights up : Blink \quad : Lights off \triangle : Uncertain state according to situation \times : Either state locked up according to failure

DIMENSIONS (Unit : mm)

SF1-A \square
Sensor unit

SF1-A \square-H Sensor unit

Model No.	A	B	C
SF1-A8-H	140	172	189
SF1-A16-H	300	332	349
SF1-A24-H	460	492	509
SF1-A32-H	620	652	669
SF1-A40-H	780	812	829
SF1-A48-H	940	972	989
SF1-A56-H	1,100	1,132	1,149
SF1-A64-H	1,260	1,292	1,309

MS-SF1-1 Sensor mounting bracket (Accessory)

Material : SPCC (Uni-chrome plated)
One package consists of four sets of brackets.
(Four M6 $\times 40 \mathrm{~mm}$ truss head screws, four nuts, and four spring washers are attached.

Assembled dimensions

Mounting drawing with SF1-A \square.
The spatter protection hood type (SF1-A $\square-\mathbf{H}$) is assembled in the same way.

Model No.	A	D	E
SF1-A8(-H)	140	205	219
SF1-A16(-H)	300	365	379
SF1-A24(-H)	460	525	539
SF1-A32(-H)	620	685	699
SF1-A40(-H)	780	845	859
SF1-A48(-H)	940	1,005	1,019
SF1-A56(-H)	1,100	1,165	1,179
SF1-A64(-H)	1,260	1,325	1,339

SF-IND

Large indicator (Option)

Assembled dimensions

Mounting drawing with SF1-A \square.
The spatter protection hood type (SF1-A \square-H) is assembled in the same way.

Model No.	E	F
SF1-A8(-H)	219	232
SF1-A16(-H)	379	392
SF1-A24(-H)	539	552
SF1-A32(-H)	699	712
SF1-A40(-H)	859	872
SF1-A48(-H)	1,019	1,032
SF1-A56(-H)	1,179	1,192
SF1-A64(-H)	1,339	1,352

- пит

SF1-AC2 Controller

MS-SF1-P Sensor mounting bracket (Option)

Material : SPCC (Uni-chrome plated)
One package consists of four sets of brackets.

Assembled dimensions

Mounting drawing with SF1-A \square.
The spatter protection hood type (SF1-A \square-H) is assembled in the same way.

