Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly # OPV314AT, OPV314YAT, OPV314YBT #### Features: - 850 nm VCSEL technology - High thermal stability - Up to 2.5 Gbps - Recommended for multimode fiber applications - Microbead lens - Pin out and attenuation options available upon request - Burned in for communication level reliability - High optical coupling to MM fiber - ST style receptacle ### **Description:** The OPV314AT is a high performance 850nm VCSEL packaged for high speed communication links. OPV314AT combines all the performance advantages of a VCSEL with the addition of a power monitor diode for precise control of optical power. The OPV314YAT and OPV314AT are identical electrically and optically and differ only in pin out. Refer to mechanical drawings for details. This product's combination of features including high speed, high output power and concentric beam makes it an ideal transmitter for integration into all types of data communications equipment. ### **Applications:** - Fiber channel - **Gigabit Ethernet** - ATM - VSR (very short reach) - Intra-system links applications - Optical backplane interconnects ## Absolute Maximum Ratings (T_A = 25° C unless otherwise noted) | Storage Temperature | -40°C to +125°C | |--|----------------------| | Operating Temperature | 0°C to +85°C | | Soldering Lead Temperature | 260°C for 10 Seconds | | Maximum Forward Peak Current, Continuous | 12mA | | Maximum Reverse Voltage | 5V | | Maximum Forward, Current, pulsed 1μs P.W., 10% D.C.) | 48mA | Additional laser safety information can be found on the Optek website. See application #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may cause devices to exceed rated classification. Rev E 08/2019 Page 1 # Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly OPV314AT, OPV314YAT, OPV314YBT ## **Electrical Specifications** **Electrical Characteristics** (T_A = 25° C unless otherwise noted) | SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |-----------------------|---|-----|------|------|-------|---| | P _{T50} | Total coupled power OPV314AT, OPV314YAT 50/125 μm fiber OPV314YBT | 600 | | | μW | I _F = 7 mA | | | | 400 | | | μW | I _F = 7 mA | | I _{TH} | Threshold current | 0.8 | | 3.0 | mA | Note 1 | | V_{F} | Forward voltage | 1.6 | | 2.2 | V | I _F = 7 mA | | I_R | Reverse current | | | 100 | nA | V _R = 5 V | | R_{S} | Series resistance | 20 | | 55 | Ohms | Note 2 | | η | Slope efficiency OPV314AT, OPV314YAT OPV314YBT | 60 | | | μW/mA | Note 3 | | | | 40 | | | μW/mA | | | I _{RPD} | Reverse current, photodiode | | | 30 | nA | V _R = 40 V | | I _M | Monitor current | 30 | | | μΑ | I _F = 7 mA, V _R = 5 V | | λ | Wavelength | 840 | | 860 | Nm | | | Δλ | Optical bandwidth | | | 0.85 | Nm | | | t_r | Rise time | | 90 | | Ps | 20 to 80% | | t_f | Fall time | | 120 | | Ps | 80 to 20% | | N _{RI} | Relatively intensity noise | | -123 | | Db/Hz | | | Δη/ΔΤ | Temp coefficient of slope efficiency | | -0.4 | | %/°C | 0° - 70°C | | ΔI_{TH} | Temp variance of threshold current | | ±1.0 | | mA | 0° - 70°C | | Δλ/ΔΤ | Temp coefficient of wavelength | | 0.06 | | Nm/°C | 0° - 70°C | | $\Delta V_f/\Delta T$ | Temperature coefficient for V _F | | -2.5 | | Mv/°C | | #### Notes: - (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6mA. Line 2 from 0 mA to 0.5mA. - (2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA. - (3) Slope efficiency is the slope of the best fit LI line from 5 mA to 8mA using no larger than 25 mA test interval points. Measured with a 50/125 µm fiber. This component is sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product. Rev E 08/2019 Page 2 # Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly # OPV314AT, OPV314YAT, OPV314YBT ### Normalized Output Power vs. Forward | OPV314AT | | | | | |----------|------------------------|--|--|--| | Pin | Connection | | | | | 1 | VCSEL Anode | | | | | 2 | VCSEL Cathode/PD Anode | | | | | 3 | PD Cathode | | | | | OPV314YAT, OPB314YBT | | | | | |----------------------|------------------------|--|--|--| | Pin | Connection | | | | | 1 | VCSEL Cathode | | | | | 2 | VCSEL Anode/PD Cathode | | | | | 3 | PD Anode | | | |